Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent

نویسندگان

چکیده

In this paper, we consider the existence and asymptotic properties of solutions to following Kirchhoff equation \(- \left(a+b\int_{{\mathbb{R}^3}} {{{\left| {\nabla u} \right|}^2}}\right) \Delta u=\lambda u+ {| u |^{p - 2}}u+\mu |^{q 2}}u\) in \(\mathbb{R}^{3}\) under normalized constraint \(\int_{{\mathbb{R}^3}} {{u}^2}=c^2\), where \(a>0\), \(b>0\), \(c>0\), \(2<q<\frac{14}{3}<p\leq 6\) or \(\frac{14}{3}<q< p\leq 6\), \(\mu>0\) \(\lambda\in\mathbb{R}\) appears as a Lagrange multiplier. both cases for range \(p\) \(q\), Sobolev critical exponent \(p=6\) is involved corresponding energy functional unbounded from below on \(S_c=\{ \in H^{1}({\mathbb{R}^3})\colon \int_{{\mathbb{R}^3}} {{u}^2}=c^2 \}\). If \(2<q<\frac{10}{3}\) \(\frac{14}{3}<p<6\), obtain multiplicity result equation. \(2<q<\frac{10}{3}<p=6\) get ground state solution Furthermore, derive several results obtained solutions. Our extend Soave (J. Differential Equations 2020 & J. Funct. Anal. 2020), which studied nonlinear Schrödinger equations with combined nonlinearities, equations. To deal special difficulties created by nonlocal term \(({\int_{{\mathbb{R}^3}} {\left| \right|} ^2}) u\) appearing type equations, develop perturbed Pohozaev approach find way clear picture profile fiber map via careful analysis. meantime, need some subtle estimates \(L^2\)-constraint recover compactness case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of solutions for elliptic systems with critical Sobolev exponent ∗

We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.

متن کامل

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...

متن کامل

Multiple Positive Solutions for Equations Involving Critical Sobolev Exponent in R N

This article concerns with the problem ?div(jruj m?2 ru) = hu q + u m ?1 ; in R N : Using the Ekeland Variational Principle and the Mountain Pass Theorem, we show the existence of > 0 such that there are at least two non-negative solutions for each in (0;).

متن کامل

p-Laplacian problems with critical Sobolev exponent

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Fennici Mathematici

سال: 2022

ISSN: ['2737-0690', '2737-114X']

DOI: https://doi.org/10.54330/afm.120247